
1. BF-IBE (Boneh-Franklin IBE)

The program was compiled in Visual Studio 2012 and the operating system was Windows 10. We will
see how to compile the Boneh-Franklin IBE scheme (BF-IBE) implemented using the MIRACL library.
The construction of the Boneh-Franklin IBE scheme called Basic Ident is shown. The scheme is known
to be secure in IND-ID-CPA.

• Start with creating a new Win 32 Console Application. Write the project name
as “BF-IBE” and the solution name as “BF-IBE” and click ok.

• Now check Console application and Security Development Lifecycle, uncheck the
“Precompiler header” in program settings and click finish. You can go to program

setting from the left panel as shown in the figure below.

• Right click the project “Source File” in the left panel and go to AddExisting
Item.

 Click “Existing Item”.

• Now add the files mentioned below against each type of pairing.
• For MR_PAIRING_SSP curves

ssp_pair.cpp ecn.cpp zzn2.cpp zzn.cpp big.cpp miracl.lib

• For MR_PAIRING_SS2 curves
ss2_pair.cpp ec2.cpp gf2m4x.cpp gf2m.cpp big.cpp miracl.lib

 OR
 ss2_pair.cpp ec2.cpp gf2m4x.cpp gf2m.cpp big.cpp miracl.lib

Note: Code for BF-IBE.cpp file is not present in default miracl distribution.
Write down all the code provided at the “program code” section below into
the BF-IBE.cpp file.

• To choose a pairing, do the followings:

• Open the BF-IBE.cpp file. Go to the code section as shown in figure below
(Code has been copied in the BB-IBE.cpp file in above note).

• Just uncomment the type of pairing and the security you want to select.

• The pairing chosen is “MR_PAIRING_SS2” and the security chosen is
“AES Security 128”. As shown in the figure.

• We have removed “//” at the starting of “#Define MR_PAIRING_SS2”
and “#Define AES_SECURITY 128”.

• Next, add the library file "miracl.lib” in resource folder. Right click on resource
folder and go to ADDExisting Item.

• Now, we can add the “miracle.lib” to resource files. Otherwise you may see the

linking errors like error LNK2019 and error LNK2001 as shown in figure below.

• Right click the project “Header Files” in the left panel and go to AddExisting

Item. Click “Existing Item”.

• Include the “big.h” file from the miracl distribution.

• Go to the propertiesConfiguration settingsVC++ directoriesInclude
directories. Click on the drop down menu and select the “pairing” folder from
the miracl distribution.

• Go to the propertiesConfiguration settingsVC++ directoriesInclude
directories. Click on the drop down menu and select the “include” folder from
the miracl distribution.

• Go to the propertiesConfiguration settingsVC++ directoriesInclude
directories. Click on the drop down menu and select the “source” folder from
the miracl distribution. Then click on APPLY and OK.

• Build the program from the Build Tab. Click Build BF-IBE.

• The program should successfully build like below.

Note: From the solution explorer, make sure that program has "targetver.h" in
header files as shown in below figure. This file Include SDKDDKVer.h which
defines the highest available Windows platform. If you wish to build your
application for a previous Windows platform, include WinSDKVer.h and set the
_WIN32_WINNT macro to the platform you wish to support before including
SDKDDKVer.h. “targetver.h” and “SDKDDKVer.h” are used to control what
functions and constants are included into your code from the Windows headers,
based on the OS. The “targetver.h” sets defaults to using the latest version of
Windows unless thedefines are specified elsewhere. These two files (targetver.h
and SDKDDKVer.h) are auto generated when you create the project, you do not
need to manually add them to the project.

• Also make sure from the solution explorer that the program has "stdafx.h" and
"stdafx.cpp". stdafx.h is a "precompiled header file", in which any headers you
include are pre-processed to save time during subsequent compilations. These
two files (stdafx.cpp and stdafx.h) are auto generated when you create the
project. Therefore, you do not need to manually add them to the project or to
create them.

• Now click on Debug and click on Start debugging.

• When you will click on start without debugging after successfully building the program, the
program will output the following as shown in figure below.

1.1 Program Code

• The figure below shows the main function of the “BF-IBE” program, where it
initializes parameters for the construction of the Boneh-Franklin IBE scheme.
The purpose for each parameter (variable) declaration is mentioned against
each parameter (variable) in the figure.

• Setup:

• Extraction :

• Encryption:

• Decryption:

